濺射靶材是電子信息產(chǎn)業(yè)的關(guān)鍵原材料之一,其產(chǎn)品質(zhì)量關(guān)系到濺射薄膜的品質(zhì)和濺射設(shè)備的安全。
濺射靶材種類繁多。從材質(zhì)來說,包括鋁及鋁合金、銅及銅合金、鎳及鎳合金、鉻、鉬、鈦、鎢及鎢
合金、金、銀、鉑、鉭、硅、二氧化硅、氧化銦錫、二氧化錫、鐵基合金和稀土等。從靶材原始坯料
的制造方法來分,主要有熔鑄靶和粉末靶;從有無背板的角度來分,主要是焊接靶和單體靶。熔鑄靶材
的制造流程一般包括以下四步:化學提純制備高純原材料、熔煉鑄造制備鑄坯、塑性加工(鍛造、擠壓
和軋制)與熱處理、最后是機械加工。難熔金屬靶材、熔點相差很大的金屬合金靶材和陶瓷靶材坯料一般采
用粉末法制備坯料。其關(guān)鍵制造流程是:制粉、粉末冶金制坯或直接噴涂成型、對坯料進行切割、機械
加工成品。上述兩大靶坯制造流程中,除提純、制粉和機械加工外的其他制造工序都是容易產(chǎn)生內(nèi)部缺陷
的高風險工藝。靶材內(nèi)部缺陷的存在將會在濺射過程中產(chǎn)生顆粒或飛濺,從而降低薄膜質(zhì)量。對于焊接靶材,焊接質(zhì)量關(guān)系到濺射靶材與背板之間的焊接強度和濺射過程中靶材散熱,無論是對于濺射設(shè)備安
全還是濺射薄膜質(zhì)量,焊接質(zhì)量都是衡量濺射靶材質(zhì)量是否合格的關(guān)鍵指標之一。因此,在濺射靶材的
制造過程中采用無損檢測技術(shù)成為確保制備合格濺射靶材的必要措施。
1、鑄坯與粉末冶金坯料的檢驗
靶材制造用鑄坯中的缺陷包括氣孔、夾渣、疏松和裂紋等,多是體積型缺陷。對于鋁及鋁合金靶材
來說,還存在氧化鋁顆粒的檢測問題。如果帶有缺陷的鑄坯進入制造流程中,最終的靶材可能完全不合格
。因此在下料前必須對鑄錠進行內(nèi)部缺陷檢驗。X射線檢測技術(shù)和超聲波檢測技術(shù)都可以進行材料內(nèi)部缺
陷檢驗,但其適用性取決于鑄坯的材質(zhì)。
試驗發(fā)現(xiàn),超聲波在超高純鋁及合金(>5N,99.999wt%)鑄坯中傳播時,衰減較小,也不
存在由于晶粒粗大導致的晶界散射現(xiàn)象。圖1所示為設(shè)計的鋁合金鑄坯對比試塊軸向截面圖和超聲
C掃圖像,檢測頻率為10MHz,探頭晶片直徑φ0.375×25.4mm,探頭焦距為4×25.4
mm。
可以看出,水浸C掃超聲波技術(shù)可以有效滿足鋁及鋁合金鑄錠內(nèi)0.5mm平底孔當量的缺陷
檢測要求。檢驗質(zhì)量驗收標準如表1所示。
超高純銅(≥6N)鑄坯和超高純鎳(≥5N)鑄坯的晶粒尺寸巨大,都是厘米量級,主要是因為鑄
造過程中缺少型核質(zhì)心導致過低的形核率而造成的。通過對兩者的鑄坯進行超聲波檢驗發(fā)現(xiàn),兩者都不
適合采用超聲波檢驗技術(shù)進行內(nèi)部缺陷檢驗,但其原因卻完全不同。
超聲波在超高純銅中傳播時存在兩個問題:一是衰減嚴重;二是晶體取向的影響。首先,
采用USN60超聲探傷儀和5MHz縱波直探頭,以82dB的增益檢驗上下表面平行的150mm厚鑄
錠(表面粗糙度<1.6tim)時,只能觀察到一次底波且波幅不超過滿屏的10%,表明超聲波衰減嚴
重,無法對鑄錠進行有效檢測。其次,在利用水浸C掃描技術(shù)采用2.25MHz4×25.4mm焦距探
頭對75mm厚高純銅鑄錠進行檢測時發(fā)現(xiàn),檢測入射面不同區(qū)域的底波顯示的厚度與實際厚度存在
較大差別,如圖2所示。不同區(qū)域的C掃測量厚度的差異表明不同區(qū)域之間的聲速存在差別,與標準聲速相比最大
可以增大約24.56%。這種現(xiàn)象主要是由于鑄錠內(nèi)晶粒尺寸的巨大引起的。超聲波在介質(zhì)中傳播的聲速與
介質(zhì)的彈性模量E有關(guān)。對于晶粒細小的多晶材料,由于晶體取向是隨機的,因此材料整體表現(xiàn)為各
向同性,其彈性模量也是各向同性,超聲波在其中傳播的聲速也各向相等。但對于單晶材料,其彈性模量與晶體取向有關(guān)。超聲波在晶粒粗大的超高純銅鑄錠中傳播時,實質(zhì)是在不同晶粒內(nèi)的傳播。各
個晶粒的取向都存在差異,由此導致了各區(qū)域聲速的不同。這種晶體取向?qū)е侣曀俚牟町悶槔贸?
波檢測超高純銅鑄錠內(nèi)部缺陷增加了新的困難。
與超高純銅鑄錠明顯不同,超聲波在高純鎳中的衰減并不明顯,其主要問題是粗大晶粒導致的晶
界散射。將高純鎳鑄錠切割成薄片,表面處理后粗糙度<1.6μm。然后分別采用x射線檢測技術(shù)和
超聲波檢測技術(shù)對該切片進行檢測。對比發(fā)現(xiàn)兩種方法的檢驗結(jié)果并不相符,X射線判定切片中無缺陷
的區(qū)域,超聲波檢驗時判定存在缺陷。經(jīng)解剖并
逐層磨制觀察,確認這些區(qū)域不存在缺陷,而是晶界,如圖3所示。說明超純鎳鑄錠中晶界散
射對超聲波檢驗存在嚴重干擾而無法進行有效判定。綜上所述,對于高純銅和高純鎳鑄錠的內(nèi)部缺陷,
超聲波檢測存在局限,x射線技術(shù)更適用。
粉末法制備的靶材坯料一般超聲波聲學特征較好,且晶粒尺寸細小,因此,多數(shù)可以適用于超聲波檢測技術(shù)。
粉末法制備的坯料,無論是粉末冶金法還是噴涂法,其內(nèi)部缺陷主要包括裂紋、空洞、夾雜和不致
密。與鑄錠內(nèi)的球形或長條形空洞不同,粉末法坯料中的空洞和夾雜主要是不規(guī)則形狀,其形狀與夾
雜物的形狀相同。因此,空洞、夾雜和裂紋在粉末坯料中可以任意方向,必須從多個角度進行檢測才能
確保無遺漏。對于不致密則主要是觀察底波損失來判定。一般如果某區(qū)域底波損失超過4dB,即可判定
該區(qū)域不致密。
2、塑性加工靶坯的檢驗
除少數(shù)鑄造靶材和直接噴涂成型靶材外,大多數(shù)靶材都是通過一系列塑性加工和熱處理制成。塑、
性加工方法包括熱鍛、冷鍛、熱軋制、冷軋制、模壓、擠壓和拉伸等。熱處理包括固溶處理、正火
、退火、淬火和時效等。理論上每個工序后都應該進行檢驗,但考慮到生產(chǎn)效率,一般在加工完成后
對最終的靶材板坯進行檢驗。
經(jīng)過上述工藝加工后,靶材板坯的顯微組織得到了顯著細化,板坯厚度為3~40mm
之間,超聲波聲學特征良好。在上述加工過程中,靶材板坯內(nèi)可能形成的缺陷包括裂紋、分層、夾雜、
折疊、過熱、晶粒粗大、過燒、白點和疏松等。除裂紋外,這些缺陷有個共同的特征,即呈線性平
面形狀,方向沿塑性加工的流線方向,且與塑性加工平面平行。顯然,超聲波檢測技術(shù)對此類特征的缺
陷最為靈敏。因此靶材內(nèi)部缺陷的檢驗與評判一般都采用超聲縱波脈沖反射式水浸C掃檢測技術(shù)。檢測
時一般將超聲波焦點聚焦到靶坯厚度的中間位置。
評判驗收標準與靶材的應用等級有關(guān)。根據(jù)驗收要求設(shè)計加工人工平底孔對比試塊即可。表2列出
了當前通用的靶材坯料內(nèi)部驗收標準。
3、焊接質(zhì)量檢驗
出于降低成本和增強板材組件強度和導熱性能要求,多數(shù)濺射靶材采用了與冷卻背板焊接的形式,
尤其是大尺寸靶材。濺射靶材的背板一般采用鋁合金、銅合金、鉬或者不銹鋼等,其構(gòu)型有的簡單,只
是一塊具有一定硬度、強度和厚度的圓形或者矩形板材;有的構(gòu)型復雜,內(nèi)部帶有復雜的冷卻水道。
濺射靶材與背板的焊接是在對濺射靶材板坯完成機械加工后進行,使用的焊接技術(shù)包括釬焊、電子束
焊、擴散焊和爆炸焊等。
真空電子束焊接形成的焊縫中可能存在的缺陷有裂紋、空洞、夾雜、未熔合和未焊透等。根據(jù)使用
環(huán)境的技術(shù)要求來確定針對真空電子束焊接質(zhì)量的檢驗方法。
釬焊、擴散焊和爆炸焊應用于靶材時,焊接方式基本都是兩個平面之間的焊接。釬焊是采用中間材
料將兩工件進行粘接的連接方式,中間材料(即釬焊焊料)包括銦和錫基焊料等低溫焊料。存在的焊接缺
陷主要是未粘接和夾雜。
擴散焊過程較為復雜,焊接面還要進行特殊處理,如噴砂毛化或者車齒。毛化或者車齒后的焊接界
面本身就存在著缺陷--微小尺寸的裂隙,一般為百微米量級。因此擴散焊檢測的主要是尺度較大的,
如毫米量級的未焊合。爆炸焊和擴散焊相似。
無論是釬焊、擴散焊還是爆炸焊,其焊接缺陷具有共同的特征,即線狀平面型缺陷。因此主要采用超
聲縱波C掃描技術(shù)進行檢驗和評判。
焊接檢驗用對比試塊的設(shè)計與加工技術(shù)要求可以參考ASTMF1512標準。對于釬焊來說,一般選
擇10MHz的水浸聚焦探頭進行檢驗。而對于對擴散焊,超聲波頻率的選擇則必須考慮焊接界面特征。
另外,釬焊與擴散焊的質(zhì)量驗收標準也存在差別。
表3列出了釬焊和擴散焊焊接質(zhì)量的驗收標準。顯然擴散焊的驗收要高于釬焊。
4、結(jié)語
當前X射線檢測技術(shù)和超聲波檢測技術(shù)基本可以滿足靶材制造的檢測要求。除鑄錠原材料外,超聲波
檢測技術(shù)在濺射靶材制造中應用得更為廣泛。超聲波檢測工序的安排要兼顧產(chǎn)品質(zhì)量和生產(chǎn)效率。靶材板坯和焊接質(zhì)量的檢驗方法主要是超聲縱波脈沖反射C掃描技術(shù)。濺射工藝的要求導致靶材檢驗的驗收
標準十分嚴格。
參考文獻:
[1]陳建軍,楊慶山,賀豐收.濺射靶材的種類、應用、制備及發(fā)展趨勢FJ].湖南有色金屬
,2006,22(04):38-76.
[2]金永中,劉東亮,陳建.濺射靶材的制備及應用研究[J].四川理工學院學報(自然科
學版),2005,18(3):22-24.
[3]努力古.濺射靶材的制備及發(fā)展趨勢[J].新疆有色金屬,2008(5):55-56.
[4]尚再艷,江軒,李勇軍,等.集成電路制造用濺射靶材[J].稀有金屬,2005,29(4):
475-477
[5]劉志堅,陳遠星,黃偉嘉,等.濺射靶材的應用及制備初探[J].南方金屬,2003,135:23-
32.
[6]WickershamCE,PooleJrJE,LeybovichA,eta1.Measurementsofthe
criticalinclusionsizeforarcingandmacroparticleejectionfromaluminumspu
tteringtargetsVJ,1.JVacSciTechnolA,2001,19(6):2767-2772.
[7]WickershamCE,PooleJrJE,F(xiàn)anJS.Arcgenera-tionfromsputteringplasm
a-dielectricinclusioninterae-tionsVJ].JVacSciTechnolA,2002,20(3):833-83
8.
[8]WickershamCE,PooleJrJE,F(xiàn)anJS,eta1.Videoanalysisofinclusionindu
cedmacroparticleemissionfromaluminumsputteringtargets[J].JVacSciTech-nolA
,2001,19(6):2741-2750.
[9]GarySSelwyn,CoreyAWeiss,F(xiàn)edericoSequeda,eta1.Particlecontamination
formationinmagnetronsputteringprocesses[J].JVacSciTechnolA,1997,15(4):20
23-2028.
[10]VikramPavate,MuraliAbburi,SunnyChiang,eta1.Correlationbetweenalum
inumalloysputteringtargetmetallurgicalcharacteristics[J].ArcinitiationandIn-
filmDefectDensity,1997(3214):42-47.
[11]PaulSGilman,AlfredSnowman,AndreDesert.De-terminationofactu
aldefectsizeincathodesputtertargetssubjectedtoultrasonicinspection:US,
6269699B1EP].2001.
[12]CharlesEWickersham,JohnEPoole,AlexanderLeybovich,eta1.Methodfor
determingacriticalsizeofaninclusioninaluminumoraluminumalloysputte-
ringtarget:US,7087142B2[P].2006.
[13]CharlesEWlckershamJR,JohnEPoole,AlexanderLeybovich,eta1.Methodfo
rdetermingacriticalsizeofaninclusioninaluminumoraluminumalloysputte-
ringtarget:US,2004/0118675AI[P].2004.
[14]RussellBGore,RonaldHFleming.Methodsoftes-tingsputteringtargetm
aterials:US,6439054B1[-P1.2002.
[15]CharlesEWlckershamJR,JohnEPoole,AlexanderLeybovich,eta1.S
puttertargetsandmethodsofmanufacturingsametoreducep[
[16]HidemasaTamura,NorioYokoyama,EiichiShimi-ZU,eta1.Sputtering
targetandproductionmethodthereof:US,6024852[P,1.2000.
[17]陳岳軍,趙海燕,史耀武.粗晶材料超聲檢測缺陷信號增強的小波分析法[J].中國有
色金屬學報,1997,7(2):94-96.
相關(guān)鏈接